Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar Purkinje neurons.

نویسندگان

  • Zayd M Khaliq
  • Indira M Raman
چکیده

Neuronal excitability is likely to be regulated by the site of action potential initiation, the location on a neuron that crosses threshold first. Although initiation is axonal in many neurons, in Purkinje cells, somatic conductances can generate spontaneous action potentials, suggesting that the perisomatic region (soma and/or initial segment) contributes to spike initiation and may regulate firing. To identify directly the cellular regions at which Na channel modulation significantly influences firing, we measured spontaneous and evoked action potentials in Purkinje cells in cerebellar slices from postnatal day 14-28 mice while applying drugs locally to either the soma/initial segment or the first node of Ranvier. Na currents were decreased by tetrodotoxin (TTX) or increased by beta-pompilidotoxin (beta-PMTX). Dual somatic and axonal recordings indicated that spike thresholds and input-output curves were sensitive to TTX or beta-PMTX at the perisomatic region but were unchanged by either drug at the first node. When perisomatic Na channel availability was reduced with subsaturating TTX, however, the input-output curve became shallower during additional TTX block of nodal channels, revealing a latent role for nodal Na channels in facilitating firing. In perisomatic TTX, axons failed to generate spontaneous or evoked spike trains. In contrast, choline block of the initial segment alone altered normal input-output curves. The data suggest that, although the first node reliably follows action potentials, spike initiation in Purkinje neurons occurs in the initial segment. Moreover, Purkinje cell output depends on the density, availability, and kinetics of perisomatic Na channels, a characteristic that may distinguish spontaneously firing from quiescent neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy.

Loss-of-function mutations of Na(V)1.1 channels cause severe myoclonic epilepsy in infancy (SMEI), which is accompanied by severe ataxia that contributes substantially to functional impairment and premature deaths. Mutant mice lacking Na(V)1.1 channels provide a genetic model for SMEI, exhibiting severe seizures and premature death on postnatal day 15. Behavioral assessment indicated severe mot...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons.

In cerebellar Purkinje neurons, the reliability of propagation of high-frequency simple spikes and spikelets of complex spikes is likely to regulate inhibition of Purkinje target neurons. To test the extent to which a one-to-one correspondence exists between somatic and axonal spikes, we made dual somatic and axonal recordings from Purkinje neurons in mouse cerebellar slices. Somatic action pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 7  شماره 

صفحات  -

تاریخ انتشار 2006